6.4

SAVING THE CONTEXT OF A PROCESS 163

Interrupt Number Interrupt Handler
0 clockintr

1 diskintr

2 ttyintr

3 devintr

4 softintr

5 otherintr

Figure 6.9. Sample Interrupt Vector

terminal interrupt handler ttyintr.

The kernel invokes the interrupt handler. The kernel stack for the new
context layer is logically distinct from the kernel stack of the previous context
layer. Some implementations use the kernel stack of the executing process to
store the interrupt handler stack frames, and other implementations use a
global interrupt stack to store the frames for interrupt handlers that are
guaranteed to return without switching context.

The interrupt handler completes it work and returns. The kernel executes a
machine-specific sequence of instructions that restores the register context and
kernel stack of the previous context layer as they existed at the time of the
interrupt and then resumes execution of the restored context layer. The
behavior of the process may be affected by the interrupt handler, since the
interrupt handler may have altered global kernel data structures and
awakened sleeping processes. Usually, however, the process continues
execution as if the interrupt had never happened.

algorithm inthand /* handle interrupts */
input: none

output: none

{
save (push) current context layer;
determine interrupt source;

find interrupt vector;

call interrupt handler;

restore (pop) previous context layer;

Figure 6.10. Algorithm for Handling Interrupts

Figure 6.10 summarizes how the kernel handles interrupts. Some machines do

part of the sequence of operations in hardware or microcode to get bettér-
performance than if all operations were done by software, but there are tradeoffs,

164 THE STRUCTURE OF PROCESSES
based on how much of the context layer must be saved and the speed of the

hardware instructions doing the save. The specific operations required in a UNIX
system implementation are therefore machine dependent.

Interrupt Sequence

Kernel Context Layer 3
Execute Clock
Interrupt Handler

Save Register Context
of Disk Interrupt
Handler

Clock Interrupt.........
A

Kernel Context Layer 2
Execute Disk
Interrupt Handler

Save Register Context
of Sys Call

Disk Interrupt....------
A ‘

Kernel Context Layer 1
Execute Sys Call

Save Register Context
User Level

Make System Call

Executing User Mode
Figure 6.11. Example of Interrupts
Figure 6.11 shows an example where a process issues a system call (see the next

section) and receives a disk interrupt while executing the system call.© While
executing the disk interrupt handler, the system receives a clock interrupt and

6.4 SAVING THE CONTEXT OF A PROCESS 165

executes the clock interrupt handler. Every time the system receives an interrupt
(or makes a system call), it creates a new context layer and saves the register
context of the previous layer. N

6.4.2 System Call Interface

The system call interface to the kernel has been described in previous chapters as

though it were a normal function call. Obviously, the usual calling sequence cannot
change the mode of a process from user to kernel. The C compiler uses a

predefined library of functions (the C library) that have the names of the system

calls, thus resolving the system call references in the user program to what would

otherwise be undefined names. The library functions typically invoke an instruction

that changes the process execution mode to kernel mode and causes the kernel to

start executing code for system calls. The ensuing discussion refers to the

instruction as an operating system trap. The library routines execute in user mode,

but the system call interface is, in short, a special case of an interrupt handler.
The library functions pass the kernel a unique number per system call in a

machine-dependent way — either as a parameter to the operating system trap, in a

particular register, or on the stack ~ and the kernel thus determines the specific

system call the user is invoking.

algorithm syscall /* algorithm for invocation of system call */
input: system call number
output: result of system call
{
find entry in system call table corresponding to system call number;
determine number of parameters to system call;
copy parameters from user address space to u area;
save current context for abortive return (described in section 6.4.4);
invoke system call code in kernel;
if (error during execution of system call)
{
set register O in user saved register context to error number;
turn on carry bit in PS register in user saved register context;

}

else
set registers 0, 1 in user saved register context
to return values from system call;

Figure 6.12. Algorithm for System Calls

166 THE STRUCTURE OF PROCESSES

In handling the operating system trap, the kernel looks up the system call
number in a table to find the address of the appropriate kernel routine that is the
entry point for the system call and to find the number of parameters the system call
expects (Figure 6.12). The kernel calculates the (user) address of the first
parameter to the system call by adding (or subtracting, depending on the direction
of stack growth) an offset to the user stack pointer, corresponding to the number of
parameters to the system call. Finally, it copies the user parameters to the u area
and calls the appropriate system call routine. After executing the code for the
system call, the kernel determines whether there was error. If so, it adjusts register
locations in the saved user register context, typically setting the “carry” bit for the
PS register and copying the error number into the register 0 location. If there were
no errors in the execution of the system call, the kernel clears the *“‘carry” bit in the
PS register and copics the appropriate return values from the system call into the
locations for registers 0 and 1 in the saved user register context. When the kernel
returns from the operating system trap to user mode, it returns to the library
instruction after the trap. The library interprets the return values from the kerael
and returns a value to the user program.

For example, consider the program that creates a file with read and write
permission for gll users (mode 0666) in the first part of Figure 6.13. The second
part of the figure shows an edited portion of the génerated output for the program,
as compiled and disassembled on a Motorola 68000 system. Figure 6.14 depicts the
stack configurations during the system call. The compiler generates code to push
the two parameters onto the user stack, where the first parameter pushed is the
permission mode setting, 0666, and the second parameter pushed is the variable
name . The process then calls the library function for the creat system call (address
7a) from address 64. The return address from the function call is 6a, and the
process pushes this number onto the stack. The library function for creat moves
the constant 8 into register O and executes a trap instruction that causes the process
to change from user mode to kernel mode and handie the system call. The kernel
recognizes that the user is making a system call and recovers the number 8 from
register 0 to determine that the system call is creat. Looking up an internal table,
the kernel finds that the creat system call takes two parameters; recovering the
stack register of the previous context layer, it copies the parameters from user space
into the u area. Kernel routines that need the parameters can find them in
predictable locations in the u area. When the kernel completes executing the code
for creat, it returns to the system call handler, which checks if the u area error
field is set (meaning there was some error in the system call); if so, the handler sets
the carry bit in the PS register, places the error code into register 0, and returns.
If there is no error, the kernel places the system return code into registers 0 and 1.

)

2. The order that the compiler evaiuates and pushes {unction parameters is implementation dependent.

6.4 SAVING THE CONTEXT OF A PROCESS 167

char name[] = “file”’;
main{)

{

int fd;
fd = creat(name, 0666);

Portions of Generated Motorola 68000 Assembler Code

Addr Instruction

code for main

58: mov &Ox1b6,(%sp) # move 0666 onto stack
Se: mov &O0x204,—(%sp) # move stack ptr

and move variable “name” onto stack
64: jsr Ox7a # call C library for creat

library code for creat

Ta: movq &O0x8,%d0 # move data value 8 into data register O
Tc: trap &0x0 # operating system trap

Te: bec &0x6 <86> # branch to addr 86 if carry bit clear
80: jmp Ox13c # jump to addr 13c

86: rts # return from subroutine

library code for errors in system call

13¢: mov %d0,&0x20e # move data reg 0 to location 20e (errno)
142: movq &—0x1,%d0 # move constant —1 into data register 0
144: mova %d0,%a0

146: rts # return from subroutine

Figure 6.13. Creat System Call and Generated Code for Motorola 63000

When returning from the system call handler to user mode, the C library checks
the carry bit in the PS register at address 7e: If it is set, the process jumps to
address 13c, takes the error code from register 0 and places it into the global
variable errno at address 20e, places a —1 in register 0, and returns to the next
instruction after the call at address 64. The return code for the function is —1,
signifying an error in the system call. If, when returning from kernel mode to user
mode, the carry bit in the PS register is clear, the process jumps from address 7e to
address 86 and returns to the caller (address 64): Register 0 contains the return
value from the system call.

168 THE STRUCTURE OF PROCESSES

kernclz stack
1b6 | mode value (octal 666) context layer 1

204 | address of variable name calling sequence

6a | return address after call to library for create
saved register context
trap
for level O (user)
at 7c
direet f value of program counter 7e
lrection o stack pointer stack pointer
stack growth time of tra ps
P reg 0 (input val 8)
other general

purpose registers

Figure 6.14. Stack Configuration for Creat System Call

Several library functions can map into one system call entry point. The system
call entry point defines the true syntax and semantics for every system call, but the
libraries frequently provide a more convenient interface. For example, there are
several flavors of the exec system call, such as exec! and execle, which provide
slightly different interfaces for one system call. The libraries for these calls
manipulate their parameters to implement the advertised features, but eventually,
map into one kernel entry point.

6.4.3 Context Switch

Referring to the process state diagram in Figure 6.1, we see that the kernel permits
a context switch under four circumstances: when a process puts itself to sleep,
when it exits, when it returns from a system call to user mode but is not the most
eligible process to run, or when it returns to user mode after the kernel completes
handling an interrupt but is not the most eligible process to run. The kernel
ensures integrity and consistency of internal data structures by prohibiting arbitrary
context switches, as explained in Chapter 2. It makes sure that the state of its data
structures is consistent before it does a context switch: that is, that all appropriate
updates are done, that queues are properly linked, that appropriate locks are set to
prevent intrusion by other processes, that no data structures are left unnecessarily
locked, and so on. For example, if the kernel allocates a buffer, reads a block in a
file, and goes to sleep waiting for 1/O transmission from the disk to complete, it
keeps the buffer locked so that no other process can tamper with the buffer. But if

6.4 SAVING THE CONTEXT OF A PROCESS 169

a process executes the link system call, the kernel releases the lock of the first inode
before locking the second inode to avoid deadlocks.

The kernel must do a context switch at the conclusion of the exit system call,
because there is nothing else for it to do. Similarly, the kernel allows a context
switch when a process enters the sleep state, since a considerable amount of time
may elapse until the process wakes up, and other processes can meanwhile execute.
The kernel allows a context switch when a process is not the most eligible to run to
permit fairer process scheduling: If a process completes a system call or returns
from an interrupt and there is another process with higher priority waiting to run,
it would be unfair to keep the high-priority process waiting.

The procedure for a context switch is similar to the procedures for handling
interrupts and system calls, except that the kernel restores the context layer of a
different process instead of the previous context layer of the same process. The
reasons for the context switch are irrelevant. Similarly, the choice of which process
to schedule next is a policy decision that does not affect the mechanics of the
context switch.

1. Decide whether to do a context switch,
and whether a context switch is permissible now.
2. Save the context of the “old” process.
3. Find the “best” process to schedule for execution,
using the process scheduling algorithm in Chapter 8.
4. Restore its context.

Figure 6.15. Steps for a Context Switch

The code that implements the context switch on UNIX systems is usually the
most difficult to understand in the operating system, because function calls give the
appearance of not returning on some occasions and materializing from nowhere on
others. This is because the kernel, in many implementations, saves the process
context at one point in the code but proceeds to execute the context switch and
scheduling algorithms in the context of the *“old” process. When it later restores
the context of the process, it resumes execution according to the previously saved
context. To differentiate between the case: where the kernel resumes the context of
a new process and the case where it continues to execute in the old context after
having saved it, the return values of critical functions may vary, or the program
counter where the kernel executes may be set artificially.

Figure 6.16 shows a scenario for doing a context switch. The function
save_context saves information about the context of the running process and returns
the value 1. Among other pieces of information, the kernel saves the value of the
current program counter (in the function save_context) and the value 0, to be used
later as the return value in register 0 from save_context. The kernel continues to
execute in the context of the old process: (A), picking another process (B) to run

170 THE STRUCTURE OF PROCESSES

if (save_context()) /* save context of executing process */

/* pick another process to run */

resume_context(new_process);
/* never gets here ! */
)

/* resuming process executes from here */

Figure 6.16. Pseudo-Code for Context Switch

and calling resume_context to restore the new context (of B). After the new
context is restored, the system is executing process B; the old process (A) is no
longer executing but leaves its saved context behind (hence, the comment in the
figure “never gets here™). Later, the kernel will again pick process A to run
(except for the exit case, of course) when another process does a context switch, as
just described. When process A’s context is restored, the kernel will set the
program counter to the value process A had previously saved in the function
save_context, and it will also place the value 0, saved for the return value, into
register 0. The kernel resumes execution of process A inside save_context even
though it had executed the code up to the call to resume_context before the context
switch. Finally, process A returns from the function save context with the value 0
(in register 0) and resumes execution after the comment line “resuming process
executes from here.”

6.4.4 Saving Context for Abortive Returns

Situations arise when the kernel must abort its current execution sequence and
immediately execute out of a previously saved context. Later sections dealing with
sleep and signals describe the circumstances when a process must suddenly change
its context; this section explains the mechanisms for executing a previous context.
The algorithm to save a context is setjmp and the algorithm to restore the context
is longjmp.> The method is identical to that described for the function save_context
in the previous section, except that save_context pushes a new context layer,
whereas setjmp stores the saved context in the u area and continues to execute in

3. These algorithms should not be confused with the library functions of the same name that users can
call directly from their programs (see [SVID 85]). However, their functions are similar.

6.4 SAVING THE CONTEXT OF A PROCESS 171

the old context layer. When the kernel wishes to resume the context it had saved
in setjmp, it does a longjmp, restoring its context from the u area and returning a
1 from setjmp.

6.4.5 Copying Data between System and User Address Space

As presented so far, a process executes in kernel mode or in user mode with no
overlap of modes. However, many system calls examined in the last chapter move
data between kernel and user space, such as when copying system call parameters
from user to kernel space or when copying data from I/O buffers in the read
system call . Many machines allow the kernel to reference addresses in user space
directly. The kernel must ascertain that the address being read or written is
accessible as if it had been executing in user mode; otherwise, it could override the
ordinary protection mechanisms and inadvertently read or write addresses outside
the user address space (possibly kernel data structures). Therefore, copying data
between kernel space and user space is an expensive proposition, requiring more
than one instruction.

fubyte: # move byte from user space
prober $3,81,*4(ap) # byte accessible?
beql eret # no
movzbl *4(ap),r0
ret
eret:
mnegl $1,r0 # error return (—1)
ret

Figure 6.17. Moving Data from User to System Space on a VAX

Figure 6.17 shows sample VAX code for moving one character from user
address space to kernel address space. The prober instruction checks if one byte at
address argument pointer register+4 (*4(ap)) could be read in user mode (mode
3) and, if not, the kernel branches to address eret, stores —1 in register 0, and
returns; the character move failed. Otherwise, the kernel moves one byte from the
given user address to register 0 and returns that value to the caller. The procedure
is expensive, requiring five instructions (with the function call to fubyte) to move 1
character.

6.5 MANIPULATION OF THE PROCESS ADDRESS SPACE

So far, this chapter has described how the kernel switches context between
processes and how it pushes and pops context layers, viewing the user-level context
‘as a static object that does not change during restoration of the process context.

172 THE STRUCTURE OF PROCESSES

However, various system calls manipulate the virtual address space of a process, as
will be seen in the next chapter, doing so according to well defined operations on
regions. This section describes the region data structure and the operations on
regions; the next chapter deals with the system calls that use the region operations.

The region table entry contains the information necessary to describe a region.
In particular, it contains the following entries:

® A pointer to the inode of the file whose contents were originally loaded into the
region

The region type (text, shared memory, private data or stack)

The size of the region

The location of the region in physical memory

The status of a region, which may be a combination of

— locked

— in demand

— in the process of being loaded into memory

— valid, loaded into memory

¢ The reference count, giving the number of processes that reference the region.

The operations that manipulate regions are to lock a region, unlock a region,
allocate a region, attach a region to the memory space of a process, change the size
of a region, load a region from a file into the memory space of a process, free a
region, detach a region from the memory space of a process, and duplicate the
contents of a region. For example, the exec system call, which overlays the user
address space with the contents of an executable file, detaches old regions, frees
them if they were not shared, allocates new regions, attaches them, and loads them
with the contents of the file. The remainder of this section describes the region
operations in detail, assuming the memory management model described earlier
(page tables and hardware register triples) and the existence of algorithms for
allocation of page tables and pages of physical memory (Chapter 9).

6.5.1 Locking and Unlocking a Region

The kernel has operations to lock and unlock a region, independent of the
operations to allocate and free a region, just as the file system has lock-unlock and
allocate-release operations for inodes (algorithms iget and ipur). Thus the kernel
can lock and allocate a region and later unlock it without having to free the region.
Similarly, if it wants to manipulate an allocated region, it can lock the region to
prevent access by other processes and later unlock it.

6.5.2 Allocating a Region

The kernel allocates a new region (algorithm allocreg, Figure 6.18) during fork,
exec, and shmget (shared memory) system calls. The kernel contains a region

6.5 MANIPULATION OF THE PROCESS ADDRESS SPACE 173

table whose entries appear either on a free linked list or on an active linked list.
When it allocates a region table entry, the kernel removes the first available entry
from the free list, places it on the active list, locks the region, and marks its type
(shared or private). With few exceptions, every process is associated with an
executable file as a result of a prior exec call, and allocreg sets the inode field in
the region table entry to point to the inode of the executable file. The inode
identifies the region to the kernel so that other processes can share the region if
desired. The kernel increments the inode reference count to prevent other processes
from removing its contents when unlinking it, as will be explained in Section 7.5.
Allocreg returns a locked, allocated region.

algorithm allocreg /* allocate a region data structure */
input: (1) inode pointer
(2) region type
output: locked region
{
remove region from linked list of free regions;
assign region type;
assign region inode pointer;
if (inode pointer not null)
increment inode reference count;
place region on linked list of active regions;
return(locked region);
}

Figure 6.18. Algorithm for Allocating a Region

6.5.3 Attaching a Region to a Process

The kernel attaches a region during the fork, exec, and shmat system calls to
connect it to the address space of a process (algorithm attachreg, Figure 6.19).
The region may be a newly allocated region or an existing region that the process
will share with other processes. The kernel allocates a free pregion cntry, sets its
type field to text, data, shared memory, or stack, and records the virtual address
where the region will exist in the process address space. The process must not
exceed the system-imposed limit for the highest virtual address, and the virtual
addresses of the new region must not overlap the addresses of existing regions. For
example, if the system restricts the highest virtual address of a process to 8
megabytes, it would be illegal to attach a 1 megabyte-size region to virtual address
7.5M. If it is legal to attach the region, the kernel increments the size field in the
process table entry according to the region size, and increments the region reference
count.

174 THE STRUCTURE OF PROCESSES

algorithm attachreg /* attach a region to a process */

input: (1) pointer to (locked) region being attached
(2) process to which region is being attached
(3) virtual address in process where region will be attached
(4) region type

output: per process region table entry

allocate per process region table entry for process;
initialize per process region table entry:

set pointer to region being attached;

set type field;

set virtual address field;
check legality of virtual address, region size;
increment region reference count;
increment process size according to attached region;
initialize new hardware register triple for process;
return(per process region table entry);

Figure 6.19. Algorithm for Attachreg

Attachreg then initializes a new set of memory management register triples for
the process: If the region is not already attached to another process, the kernel
allocates page tables for it in a subsequent call to growreg (next section); otherwise,
it uses the existing page tables. Finally, arrachreg returns a pointer to the pregion
entry for the newly attached region. For example, suppose the kernel wants to
attach an existing (shared) text region of size 7K bytes to virtual address 0 of a
process (Figure 6.20): it allocates a new memory management register triple and
initializes the triple with the address of the region page table, the process virtual
address (0), and the size of the page table (9 entries).

6.5.4 Changing the Size of a Region

A process may expand or contract its virtual address space with the sbrk system
call. Similarly, the stack of a process automatically expands (that is, the process
does not make an explicit system call) according to the depth of nested procedure
calls. Internally, the kernel invokes the algorithm growreg to change the size of a
region (Figure 6.21). When a region expands, the kernel makes sure that the
virtual addresses of the expanded region do not overlap those of another region and
that the growth of the region does not cause the process size to become greater
than the maximum allowed virtual memory space. The kernel never invokes
growreg to increase the size of a shared region that is already attached to several
processes; therefore, it does not have to worry about increasing the size of a region

6.5 MANIPULATION OF THE PROCESS ADDRESS SPACE 178

Per Process Region Table
Page | Proc | Size
Table | Virt | and
Addr | Addr |Protect

\ 0 9

Entry
for Text

empty

empty
846K
752K
341K
484K
976K
342K
779K

Figure 6.20. Example of Attaching to an Existing Text Region

for one process and causing another process to grow beyond the system limgit for
process size. The two cases where the kernel uses growreg on an existing region are
sbrk on the data region of a process and automatic growth of the user stack. Both
regions are private. Text regions and shared memory regions cannot grow after
they are initialized. These cases will become clear in the next chapter.

The kernel now allocates page tables (or extends existing page tables) to
accommodate the larger region and allocates physical memory on systems that do
not support demand paging. When allocating physical memory, it makes sure such
memory is available before invoking growreg:; if the memory is unavailable, it
resorts to other measures to increase the region size, as will be covered in Chapter
9. If the process contracts the region, the kernel simply releases memory assigned
to the region. In both cases, it adjusts the process size and region size and
reinitializes the pregion entry and memory management register triples to conform
to the new mapping.

For example, suppose the stack region of a process starts at virtual add -ess
128K and currently contains 6K bytes, and the kernel wants to extend the size of
the region by 1K bytes (1 page). If the process size is acceptable and virtual

176 THE STRUCTURE OF PROCESSES

algorithm growreg /* change the size of a region */
input: (1) pointer to per process region table entry
(2) change in size of region (may be positive or negative)
output: none
{
if (region size increasing)
{
check legality of new region size;
allocate auxiliary tables (page tables);
if (not system supporting demand paging)

allocate physical memory,;
initialize auxiliary tables, as necessary;
else /* region size decreasing */

free physical memory, as appropriate;
free auxiliary tables, as appropriate;

}

do (other) initialization of auxiliary tables, as necessary;
set size field in process table;

Figure 6.21. Algorithm Growreg for Changing the Size of a Region

addresses 134K to 135K — 1 do not belong to another region attached to tbe
process, the kernel extends the size of the region. It extends the page table,
allocates a page of memory, and initializes the new page table entry. Figure 6.22
illustrates this case. v

6.5.5 Loading a Region

In a system that supports demand paging, the kernel can “map” a file into the
process address space during the exec system call, arranging to read individual
physical pages later on demand, as will be explained in Chapter 9. If the kernel
does not support demand paging, it must copy the executable file into memory,
loading the process regions at virtual addresses specified in the executable file. It
may attach a region at a different virtual address from where it loads the contents
of the file, creating a gap in the page table (recall Figure 6.20). For example, this
feature is used to cause memory faults when user programs access address 0
illegally. Programs with pointer variables sometimes use them erroneously without
checking that their value is O and, hence, that they are illegal for use as a pointer

6.5 MANIPULATION OF THE PROCESS ADDRESS SPACE 177

Per Process Region Table Per Process Region Table
Page | Proc | Size Page | Proc | Size
Table | Virt | and Table | Virt | and
Addr | Addr |Protect Addr | Addr |Protect

Entry f
Entry for | 18K | ek ok NEIE

342K 342K
779K 779K
846K 846K
752K 752K
341K 341K
484K 484K

NEW PAGE—= 976K

Before Stack Growth After Stack Growth

Figure 6.22. Growing the Stack Region by 1K Bytes

reference. By protecting the page containing address O appropriately, processes
that errantly access address O incur a fault and abort, allowing programmers to
discover such bugs more quickly.

To load a file into a region, loadreg (Figure 6.23) accounts for the gap between
the virtual address where the region is attached to the process and the starting
virtual address of the region data and expands the region according to the amount
of memory the region requires. Then it places the region in the state “being loaded
into memory” and reads the region data into memory from the file, using an
internal variation of the read system call algorithm.)

If the kernel is loading a text region that can be shared by several processes, it
is possible that another process could find the region and attempt to use it before its
contents were fully loaded, because the first process could sleep while reading the

178 THE STRUCTURE OF PROCESSES

algorithm loadreg /* load a portion of a file into a region */
input: (1) pointer to per process region table entry
(2) virtual address to load region
(3) inode pointer of file for loading region
(4) byte offset in file for start of region
(5) byte count for amount of data to load
output: none
{
increase region size according to eventual size of region
(algorithm growreg);
mark region state: being loaded into memory;
unlock region;
set up u area parameters for reading file:
target virtual address where data is read to,
start offset value for reading file,
count of bytes to read from file;
read file into region (internal variant of read algorithm);
lock region;
mark region state: completely loaded into memory;
awaken all processes waiting for region to be loaded;

Figure 6.23. Algorithm for Loadreg

file. The details of how this could happen and why locks cannot be used are left for
the discussion of exec in the next chapter and in Chapter 9. To avoid a problem,
the kernel checks a region state flag to see if the region is completely loaded and, if
the region is not loaded, the process sleeps. At the end of loadreg, the kernel
awakens processes that were waiting for the region to be loaded and changes the
region state to valid and in memory.

For example, suppose the kernel wants to load text of size 7K into a region that
is attached at virtual address 0 of a process but wants to leave a gap of 1K bytes at
the beginning of the region (Figure 6.24). By this time, the kernel will have
allocated a region table entry and will have attached the region at address 0 using
algorithms allocreg and attachreg. Now it invokes loadreg, which invokes growreg
twice — first, to account for the 1K byte gap at the beginning of the region, and
second, to allocate storage for the contents of the region — and growreg allocates a
page table for the region. The kernel then sets up fields in the u area to read the
file: It reads 7K bytes from a specified byte offset in the file (supplied as a
parameter by the kernel) into virtual address 1K of the process.

6.5

Per Process Region Table

MANIPULATION OF THE PROCESS ADDRESS SPACE

Page | Proc | Size

Table | Virt and

Addr | Addr |Protect
Text| — 0

(a) Original Region Entry

Per Process Region Table

(b) After First Grc;wreg‘
Page Table with One Entry

Page | Proc | Size
Table | Virt and
Addr | Addr {Protect
\ 0 1
empty

I

for Gap

6.5.6 Freeing a Region

179

Per Process Region Table

Page
Table
Add-

Proc
Virt
Addr

Size
and
Protect

\

0

g -

empty

779K

846K

752K

341K

484K

976K

794K

(c) After 2nd Growreg

Figure 6.24. Loading a Text Region

When a region is no longer attached to any processes, the kernel can free the region
and return it to the list of free regions (Figure 6.25). If the region is associated
with an inode, the kérnel releases the inode using algorithm iput, corresponding to
the increment of the inode reference count in allocreg. The kernel releases physical
resources associated with the region, such as page tables and memory pages. For
example, suppose the kernel wants to free the stack region in Figure 6.22.
Assuming the region reference count is 0, it releases the 7 pages of physical
memory and the page iable. '

180

THE STRUCTURE OF PROCESSES

{

algorithm freereg /* free an allocated region */
input:
output: none

pointer to a (locked) region

if (region reference count non zero)

{
/* some process still using region */
release region lock;
if (region has an associated inode)
release inode lock;
return;
}

if (region has associated inode)
release inode (algorithm iput);
free physical memory still associated with region;
free auxiliary tables associated with region;
clear region fields;,
place region on region free list;
unlock region;

Figure 6.25. Algorithm for Freeing a Region

algorithm detachreg /* detach a region from a process */
input: pointer to per process region table entry

output: none

get auxiliary memory management tables for, process,

release as appropriate;

decrdment process size;
decrement region reference count;
if (region reference count is 0 and region not sticky bit)

else

{

\

' free region (algorithm freereg);

/* either reference count non-0 or region sticky bit on */

free inode lock, if applicable (inode associated with region);
free region lock;

Figure 6.26. Algorithm Detachreg

6.5 MANIPULATION OF THE PROCESS ADDRESS SPACE - 181

6.5.7 Detaching a Region from a Process

The kernel detaches regions in the exec, exit, and shmdt (detach shared memory)
system calls. It updates the pregion entry and severs the connection to physical
memory by invalidating the associated memory management register triple
(algorithm detachreg, Figure 6.26). The address translation mechanisms thus
invalidated apply specifically to the process, not to the region (as in algorithm
freereg). The kernel decrements the region reference count and the size field in the
process table entry according to the size of the region. If the region reference
count drops to O and if there is no reason to ieave the region intact (the region is
not a shared memory region or a text region with the sticky bit on, as will be
described in Section 7.5), the kernel frees the region using algorithm Sfreereg.
Otherwise, it releases the region and inode locks, which had been locked to prevent
race conditions as will be described in Section 7.5 but leaves the region and its
resources allocated.

Per Process Region Tables Regions
Text Shared
Data
Stack
Proc A Private
Text Private Data
Data Copy
Stack]
Proc B Private
Private

Figure 6.27. Duplicating a Region

182 THE STRUCTURE OF PROCESSES

algorithm dupreg /* duplicate an existing region */
input: pointer to region table entry
output: pointer to a region that looks identical to input region

if (region type shared)
/* caller will increment region reference count
* with subsequent attachreg call
*/
return(input region pointer);

allocate new region (algorithm allocreg);

set up auxiliary memory management structures, as currently
exists in input region;

allocate physical memory for region contents;

"copy" region contents from input region to newly allocated
region;

return(pointer to allocated region);

Figure 6.28. Algorithm for Dupreg

6.5.8 Duplicating a Region

The fork system call requires that the kernel duplicate the regions of a process. If
a region is"shared (shared text or shared memory), however, the kernel need not
physically copy the region; instead, it increments the region reference count,
allowing the parent and child processes to share the region. If the region is not
shared and the kernel must physically copy the region, it allocates a new region
table entry, page table, and physical memory for the region. In Figure 6.27 for
example, process A forked process B and duplicated its regions. The text region of
process A is shared, so process B can share it with process A. But the data and
stack regions of process A are private, so process B duplicates them by copying
their contents to newly allocated regions. Even for private regions, a physical copy
of the region is not always necessary, as will be seen (Chapter 9). Figure 6.28
shows the algorithm for dupreg.

6.6 SLEEP

So far, this chapter has covered all the low-level functions that are executed for the
transitions to and from the state *“kernel running” except for the functions that
move a process into the sleep state. It will conclude with a presentation of the
algorithms for sleep, which changes the process state from “kernel running” to
“asleep in memory,” and wakeup, which changes the process state from “asleep” to
“ready to.run” in memory or swapped.

6.6 SLEEP 183

Kernel Context Layer 2
Execute Code for
Context Switch

Save Register Context
of Sys Call

Invoke Sleep Algorithm. ...
A

Kernel Context Layer 1
Execute Sys Call

Save Register Context
User Level

Make System Call --------

Executing User Mode

Figure 6.29. Typical Context Layers of a Sleeping Process

When a process goes to sleep, it typically does so during execution of a system
call: The process enters the kernel (context layer 1) when it executes an operating
system trap and goes to sleep awaiting a resource. When the process goes to sleep,
it does a context switch, pushing its current context laver and executing in kernel
context layer 2 (Figure 6.29). Processes also go to sleep when they incur page
faults as a result of accessing virtual addresses that are not physically loaded; they
sleep while the kernel reads in the contents of the pages.

6.6.1 Sleep Events and Addresses

Recall from Chapter 2 that processes are said to sleep on an event, meaning that
they are in the sleep state until the event occurs, at which time they wake up and
enter a “ready-to-run” state (in memory or swapped out). Although the system
uses the abstraction of sleeping on an event, the implementation maps the set of
events into a set of (kernel) virtual addresses. The addresses that represent the
events are coded into the kernel, and their only significance is that the kernel

184 THE STRUCTURE OF PROCESSES

proca awaiting 1/0 completio
proc b
addr A
proc ¢
waiting for buffer
proc d
proc e
proc f yd waiting for inode ———addr B
proc g
proc h waiting for terminal input addr C

Figure 6.30. Proéesses Sleeping on Events and Events Mapping into Addresses

expects an event to map into a particular address. The abstraction of the event
does not distinguish how many processes are awaiting the event, nor does the
implementation. As a result, two anomalies arise. First, when an event occurs and
a wakeup call is issued for processes that are sleeping on the event, they all wake
up and move from a sleep state to a ready-to-run state. The kernel does not wake
up one process at a time, even though they may contend for a single locked
structure, and many may go back to sleep after a brief visit to the kernel running
state (recall the discussion in Chapters 2 and 3). Figure 6.30 shows several
processes sleeping on events.

The second anomaly in the implementation is that several events may map into
one address. In Figure 6.30, for example, the events “waiting for the buffer” to
become free and “awaiting 1/0 completion” map into the address of the buffer
(“addr A”). When 1/0O for the buffer completes, the kernel wakes up all processes
sleeping on both events. Since a process waiting for I/O keeps the buffer locked,
other processes waiting for the buffer to become free will go back to sleep if the
buffer is still locked when they execute. It would be more efficient if there would
be a one-to-one mapping of events to addresses. In practice, however, performance
is not hurt, because the mapping of multiple events into one address is rare and
because the running process usually frees the locked resource before the other
processes are scheduled to run. Stylistically, however, it would make the kernel a
little easier to understand if the mapping were one-to-one.

6.6

SLEEP

algorithm sleep
input: (1) sleep address
(2) priority
output: 1 if process awakened as a result of a signal that process catches,
longjump algorithm if process awakened as a result of a signal
that it does not catch,
0 otherwise;

raise processor execution level to block all interrupts;
set process state to sleep;

put process on sleep hash queue, based on sleep address;
save sleep address in process table slot;

set process priority level to input priority;

if (process sleep is NOT interruptible]

do context switch;

/* process resumes exccution here when it wakes up */

reset processor priority level to allow interrupts as when
process went to sleep;

return(0);

}

/* here, process sleep is interruptible by signals */
if (no signal pending against process)

do context switch;
/* process resumes execution here when it wakes up */
if (no signal pending against process)

reset processor priority level to what it was when
process went to sleep;
return(0);
}
}

remove process from sleep hash queue, if still there;

reset processor priority level to what it was when process went to sleep;

if (process sleep priority set to catch signals)
return(1)
do longjmp algorithm;

Figure 6.31. Sleep Algorithm

185

186 THE STRUCTURE OF PROCESSES

6.6.2 Algorithms for Sleep and Wakeup

Figure 6.31 shows the algorithm for sleep. The kernel first raises the processor
execution level to block out ali interrupts so that there can be no race conditions
when it manipulates the sleep queues, and it saves the old processor execution level
so that it can be restored when the process later wakes up. It marks the process
state “asleep,” saves the sleep address and priority in the process table, and puts it
onto a hashed queue of sleeping processes. In the simple case (sleep cannot be
interrupted), the process does a context switch and is safely asleep. When a
sleeping process wakes up, the kernel later schedules it to run: The process returns
from its context switch in the sleep algorithm, restores the processor execution level
to the value it had when the process entered the algorithm, and returns.

algorithm wakeup /* wake up a sleeping process */
input: sleep address
output: none

raise processor execution level to block all interrupts;
find sleep hash queue for sleep address;
for (every process asleep on sleep address)

remove process from hash queue;
mark process state "ready to run”
put process on scheduler list of processes ready to run;
clear field in process table entry for sleep address;
if (process not loaded in memory)
wake up swapper process (0);
else if (awakened process is more eliigible to run than
currently running process)
set scheduler flag;

}

restore processor execution level to original level;

Figure 6.32. Algorithm for Wakeup

To wake up sleeping processes, the kernel executes the wakeup algorithm
(Figure 6.32), either during the usual system call algorithms or when handling an
interrupt. For instance, the algorithm iput releases a locked inode and awakens all
processes waiting for the lock to become free. Similarly, the disk interrupt handler
awakens a process waiting for 1/0 completion. The kernel raises the processor
execution level in wakeup to block out interrupts. Then for every process sleeping
on the input sleep address, it marks the process state field “ready to run,” removes
the process from the linked list of sleeping processes, places it on a linked list of
processes eligible for scheduling, and clears the field in the process table that

6.6 SLEEP 187

marked its sleep address. If a process that woke un was not loaded in memory, the
kernel awakens the swapper process to swap the process into memory (assuming the
system is one that does not support demand paging); otherwise, if the awakened
process is more eligible to run than the currently executing process, the kernel sets
a scheduler flag so that it will go through the process scheduling algorithm when
the process returns to user mode (Chapter 8). Finally, the kernel restores the
processor execution level. It cannot be stressed enough: wakeup does not cause a
process to be scheduled immediately; it only makes the process eligible for
scheduling.

The discussion above is the simple case of the sleep and wakeup algorithms,
because it assumes that the process sleeps until the proper event occurs. Processes
frequently sleep on events that are “sure” to happen, such as when awaiting a
locked resource (inodes or buffers) or when awaiting completion of disk 1/0. The
process is sure to wake up because the use of such resources is designed to be
temporary. However, a pracess may sometimes sleep on an event that is not sure to
happen, and if so, it must have a way to regain control and centinue execution. For
such cases, the kernel “interrupts” the sleeping process immediately by sending it a
signal. The next chapter explains signals in great detail; for now, assume that the
kernel can (selectively) wake up a sleeping process as a result of the signal, and
that the process can recognize that it has been sent a signal.

For instance, if a process issues a read system call to a terminal, the kernel does
not satisfy the call until a user types data on the terminal keyboard (Chapter 10).
However, the user that started the process may leave the terminal for an all-day
meeting, leaving the process asleep and waiting for input, and another user may
want to use the términal. If the second user resorts to drastic measures (such as
turning the terminal off), the kernel needs a way to recover the disconnected
process: As a first step, it must awaken the process from its sleep as the result of a
signal. Parenthetically, there is nothing wrong with processes sleeping for a long
time. Sleeping process occupy a slot in the process table and could thus lengthen
the search times for certain algorithms, but they do not use CPU time, so their
overhead is small.

To distinguish the types of sleep states, the kernel sets the scheduling priority of
the sleeping process when it enters the sleep state, based on the sleep priority
parameter. That is, it invokes the sleep algorithm with a priority value, based on
its knowledge that the sleep event is sure to occur or not. If the priority is above a
threshold value, the process will not wake up prematurely on receipt of a signal but
will sleep until the event it is waiting for happens. But if the priority value is below
the threshold value, the process will awaken immediately on receipt of the signal.*

4. The terms “above” and “below” refer to the normal usage of the terms high priority and low priority.
However, the kernel implementation uses integers to measure the priority value, with lower values
implying higher priority.

188 THE STRUCTURE OF PROCESSES

If a signal is already set against a process when it enters the sleep algorithm,
the conditions just stated determine whether the process ever gets to sleep. For
instance, if the sleep priority is above the threshold value, the process goes to sleep
and waits for an explicit wakeup cali. If the sleep priority is below the threshold
value, however, the process does not go to sleep but responds to the signal as if the
signal had arrived while it was asleep. If the kernel did not check for signals before
going to sleep, the signal may not arrive again and the process would never wake
up.

When a process is awakened as a result of a signal (or if it never gets to sleep
because of existence of a signal), the kernel may do a longjmp, depending on the
reason the process originally went to sleep. The kernel does a longjmp to restore a
previously saved context if it has no way to complete the system call it is executing.
For instance, if a terminal read call is interrupted because a user turns the terminal
off, the read should not complete but should return with an error indication. This
holds for all system calls that can be interrupted while they are asleep. The process
should not continue normally after waking up from its sleep, because the sleep
event was not satisfied. The kernel saves the process context at the beginning of
most system calls using setjmp in anticipation of the need for a later longjmp.

There are occasions when the kernel wants the process to wake up on receipt of
a signal but not do a longjmp. The kernel invokes the sleep algorithm with a
special priority parameter that suppresses execution of the longjmp and causes the
sleep algorithm to return the value 1. This is more efficient than doing a setjmp
immediately before the sleep call and then a longjmp to restore the context of the
process as it was before entering the sleep state. The purpose is to allow the kernel
to ciean up local data structures. For example, a device driver may allocate private
data structures and then go to sleep at an interruptible priority; if it wakes up
because of a signal, it should free the allocated data structures, then longjmp if
necessary. The user has no control over whether a process does a longjmp; that
depends on the reason the process was sleeping and whether kernel data structures
need modification before the process returns from the system call.

6.7 SUMMARY

This chapter has defined the context of a process. Processes in the UNIX system
move between various logical states according to well-defined transition rules, and
state information is saved in the process table and the u area. The context of a
process consists of its user-level context and its system-level context. The user-level
context consists of the process text, data, (user) stack, and shared memory regions,
and the system-level context consists of a static part (process table entry, u area,
and memory mapping information) and a dynamic part (kernel stack and saved
registers of previous system context layer) that is pushed and popped as the process
executes system calls, handles interrupts, and does context switches. The user-level
context of a process is divided into separate regions, comprising contiguous ranges
of virtual addresses that are treated as distinct objects for protection and sharing.

6.7 SUMMARY 189

The memory management model used to describe the virtual address layout of a
process assumes the use of a page table for each process region. The kernel
contains various algorithms that manipulate regions. Finally, the chapter described
the algorithms for sleep and wakeup. The following chapters use the low-level
structures and algorithms described here, in the explanation of the system calls for
process management, process scheduling, and the implementation of memory
management policies.

6.8 EXERCISES

1. Design an algorithm that translates virtual addresses to physical addresses, given the
virtual address and the address of the pregion entry.

2. The AT&T 3B2 computer and the NSC Series 32000 use a two-tiered (segmented)
translation scheme to translate virtual addresses to physical addresses. That is, the
system contains a pointer to a table of page table pointers, and each entry in the table
can address a fixed portion of the process address space, according to its offset in the
table. Compare the algorithm for virtual address translation on these machines to the
algorithm discussed for the memory model in the text. Consider issues of performance
and the space needed for auxiliary tables.

3. The VAX-11 architecture contains two sets of base and limit registers that the
machine uses for user address translation. The scheme is the same as that described
in the previous problem, except that the number of page table pointers is two. Given
that processes have three regions, text, data, and stack, what is a good way of mapping
the regions into page tables and using the two sets of registers? The stack in the
VAX-11 architecture grows towards lower virtual addresses. What should the stack
region look like? Chapter 11 will describe another region for shared memory: How
should it fit into the VAX-11 architecture?

4. Design an algorithm for allocating and freeing memory pages and page tables. What
data structures would allow best performance or simplest implementation?

5. The MC68451 memory management unit for the Motorola 68000 Family of
Microprocessors allows allocation of memory segments with sizes ranging from 256
bytes to 16 megabytes in powers of 2. Each (physical) memory management unit
contains 32 segment descriptors. Describe an efficient method for memory allocation.
What should the implementation of regions look like?

6. Consider the virtual address map in Figure 6.5. Suppose the kernel swaps the process
out (in a swapping system) or swaps out many pages in the stack region (in a paging
system). If the process later reads (virtual) address 68,432, must it read the identical
location in physical memory that it would have read before the swap or paging
operation? If the lower levels of memory management were implemented with page
tables, must the page tables be located in the same locations of physical memory?

* 7. It is possible to implement the system such that the kernel stack grows on top of the
user stack. Discuss the advantages and disadvantages of such an implementation.

8. When attaching a region to a process, how can the kernel check that the region does
not overlap virtual addresses in regions already attached to the process?

9. Consider the algorithm for doing a context switch. Suppose the system contains only
one process that is ready to run. In other words, the kernel picks the process that just
saved its context to run. Describe what happens.

190

10.

11.

12.

*15.

* 16.

17.

18.

19.

THE STRUCTURE OF PROCESSES

Suppose a process goes to sleep and the system contains no processes ready to run.
What happens when the (about to be) sleeping process does its context switch?
Suppose that a process executing in user mode uses up its time slice and, as a result of
a clock interrupt, the kernel schedules a new process to run. Show that the context
switch takes place at kernel context layer 2.

In a paging system, a process executing in user mode may incur a page fault because
it is attempting to access a page that is not loaded in memory. In the course of
servicing the interrupt, the kernel reads the page from a swap device and goes to sleep.
Show that the context switch (during the sleep) takes place at kernel context layer 2.
A process executes the system call

read(fd, buf, 1024);

on a paging system. Suppose the kernel executes algorithm read to the point where it
has read the data into a system buffer, but it incurs a page fault when trying to copy
the data into the user address space because the page containing buf was paged out.
The kernel handles the interrupt by reading the offending page into memory. What
happens in each kernel context layer? What happens if the page fault handler goes to
sleep while waiting for the page to be written into main memory?

When copying data from user address space to the kernel in Figure 6.17, what would
happen if the user supplied address was illegal?

In algorithms sleep and wakeup, the kernel raises the processor execution level to
prevent interrupts. What bad things could happen if it did not raise the processor
execution level? (Hint: The kernel frequently awakens sleeping processes from
interrupt handlers.)

Suppose a process attempts to go to sleep on event A but has not yet executed the
code in the sleep algorithm to block interrupts; suppose an interrupt occurs before the
process raises the processor execution level in sleep, and the interrupt handler attempts
to awaken all processes asleep on event A. What will happen to the process
attempting to go to sleep? Is this a dangerous situation? If so, how can the kernel
avoid it?

What happens if the kernel issues a wakeup call for all processes asleep on address A,
but no processes are asleep on that address at the time?

Many processes can sleep on an address, but the kernel may want to wake up selected
processes that receive a signal. Assume the signal mechanism can identify the
particular processes. Describe how the wakeup algorithm should be changed to wake
up one process on a sleep address instead of all the processes.

The Multics system contains algorithms for sleep and wakeup with the following
syntax:

sleep(event);
wakeup(event, priority);

That is, the wakeup algorithm assigns a priority to the process it is awakening
Compare these calls to the sleep and wakeup calls in the UNIX system.

PROCESS
CONTROL

The last chapter defined the context of a process and explained the algorithms that
manipulate it; this chapter will describe the use and implementation of the system
calls that control the process context. The fork system call creates a new process,
the exit call terminates process execution, and the wait call allows a parent process
to synchronize its execution with the exit of a child process. Signals inform
processes of asynchronous events. Because the kernel synchronizes execution of
exit and wait via signals, the chapter presents signals before exit and wait. The
exec system call allows a process to invoke a “new” program, overlaying its address
space with the executable image of a file. The brk system call allows a process to
allocate more memory dynamically; similarly, the system allows the user stack to
grow dynamically by allocating more space when necessary, using the same
mechanisms as for brk. Finally, the chapter sketches the construction of the major
loops of the shell and of init.

Figure 7.1 shows the relationship between the system calls described in this
chapter and the memory management algorithms described in the last chapter.
Almost all calls use sleep and wakeup, not shown in the figure. Furthermore, exec
interacts with the file system algorithms described in Chapters 4 and 5.

191

192 PROCESS CONTROL

System Calls Dealing System Calls Dealing
with Memory Management with Synchronization Miscellaneous
fork exec brk exit | wait |signal| kill [setpgrp| setuid

dupreg |detachreg|growreg |detachreg
attachreg | allocreg
attachreg
growreg
loadreg
mapreg

Figure 7.1. Process System Calls and Relation to Other Algorithms

7.1 PROCESS CREATION

The only way for a user to create a new process in the UNIX operating system is
to invoke the fork system call. The process that invokes fork is called the parent
process, and the newly created process is called the child process. The syntax for
the fork $ystem call is

pid = fork();

On return from the fork system call, the two processes have identical copies of their
user-level context except for the return value pid. In the parent process, pid is the
child process ID; in the child process, pid is 0. Process 0, created internally by the
kernel when the system is booted, is the only process not created via fork.

The kernel does the following sequence of operations for fork.

1. It allocates a slot in the process table for the new process.

2. It assigns a unique ID number to the child process.

3. It makes a logical copy of the context of the parent process. Since certain
portions of a process, such as the text region, may be shared between
processes, the kernel can sometimes increment a region reference count
instead of copying the region to a new physical location in memory.

4. It increments file and inode table counters for files associated with the
process.

5. Tt returns the ID number of the child to the parent process, and a 0 vaiue to
the child process.

The implementation of the fork system call is not trivial, because the child process
appears to start its execution sequence out of thin air. The algorithm for fork
varies slightly for demand paging and swapping systems; the ensuing discussion is

1.7 PROCESS CREATION 193

based on iraditional swapping systems but will point out the places that change for
demand paging systems. It also assumes that the system has enough main memory
available to store the child process. Chapter 9 considers the case where not enough
memory is available for the child process, and it also describes the implementation
of fork on a paging system.

algorithm fork

input: none

output: to parent process, child PID number
to child process, 0

{

check for available kernel resources;
get free proc table slot, unique PID number;
check that user not running too many processes;
mark child state "being created;”
copy data from parent proc table slot to new child slot;
increment counts on current directory inode and changed root (if applicable):
increment open file counts in file table;
make copy of parent context (u area, text, data, stack) in memory;
push dummy system level context layer onto child system level context;
dummy context contains data allowing child process
to recognize itself, and start running from here
when scheduled;
if (executing process is parent process)

change child state to "ready to run;”
return(child ID); /* from system to user */

else /* executing process is the child process */

initialize u area timing fields;
return(0); /* to user */

Figure 7.2. Algorithm for Fork

Figure 7.2 shows the algorithm for fork. The kernel first ascertains that it has
available resources to complete the fork successfully. On a swapping system, it
needs space either in memory or on disk to hold the child process; on a paging
system, it has to allocate memory for auxiliary tables such as page tables. If the
resources are unavailable, the fork call fails. The kernel finds a slot in the process
table to start constructing the context of the child process and makes sure that the
user doing the fork does not have too many processes already running. It also picks
a unique ID number for the new process, one greater than the most recently

194 PROCESS CONTROL

assigned ID number. If another process already has the proposed ID number, the
kernel attempts to assign the next higher ID number. When the ID numbers reach
a maximum value, assignment starts from O again. Since most processes execute
for a short time, most ID numbers are not in use when ID assignment wraps
around.

The system imposes a (configurable) limit on the number of processes a user
can simultaneously execute so that no user can steal many process table slots,
thereby preventing other users from creating new processes. Similarly, ordinary
users cannot create a process that would occupy the last remaining slot in the
process table, or else the system could effectively deadlock. That is, the kernel
cannot guarantee that existing processes will exit naturally and, therefore, no new
processes could be created, because all the process table slots are in use. On the
other hand, a superuser can execute as many processes as it likes, bounded by the
size of the process table, and a superuser process can occupy the last available slot
in the process table. Presumably, a superuser could take drastic action and spawn
a process that forces other processes to exit if necessary (see Section 7.2.3 for the
kill system call).

The kernel next initializes the child’s process table slot, copying various fields
from the parent slot. For instance, the child “inherits” the parent process real and
effective user ID numbers, the parent process group, and the parent nice value, used
for calculation of scheduling priority. Later sections discuss the meaning of these
fields. The kernel assigns the parent process ID field in the child slot, putting the
child in the process tree structure, and initializes various scheduling parameters,
such as the initial priority value, initial CPU usage, and other timing fields. The
initial state of the process is "being created" (recall Figure 6.1).

The kernel now adjusts reference counts for files with which the child process is
automatically associated. First, the child process resides in the current directory of
the parent process. The number of processes that currently access the directory
increases by 1 and, accordingly, the kernel increments its inode reference count.
Second, if the parent process or one of its ancestors had ever executed the chroot
system call to change its root, the child process inherits the changed root and
increments its inode reference count. Finally, the kernel searches the parent’s user
file descriptor table for open files known to the process and increments the global
file table reference count associated with each open file. Not only does the child
process inherit access rights to open files, but it also shares access to the files with
the parent process because both processes manipulate the same file table entries.
The effect of fork is similar to that of dup vis-a-vis open files: A new entry in the
user file descriptor table points to the entry in the global file table for the open file.
For dup, however, the entries in the user file descriptor table are in one process; for
Jork, they are in different processes.

The kernel is now ready to create the user-level context of the child process. It
allocates memory for the child process u area, regions, and auxiliary page tables,
duplicates every region in the parent process using algorithm dupreg, and attaches
every region to the child process using algorithm attachreg. In a swapping sysiem,

717 PROCESS CREATION 195

it copies the contents of regions that are not shared into a new area of main
memory. Recall from Section 6.2.4 that the u area contains a pointer to its process
table slot. Except for that field, the contents of the child u area are initially the
same as the contents of the parent process u area, but they can diverge after
completion of the fork. For instance, the parent process may open a new file after
the fork, but the child process does not have automatic access to it.

So far, the kernel has created the static portion of the child context; now it
creates the dynamic portion. The kernel copies the parent context layer 1,
containing the user saved register context and the kernel stack frame of the fork
system call. If the implementation is one where the kernel stack is part of the u
area, the kernel automatically creates the child kernel stack when it creates the
child u area. Otherwise, the parent process must copy its kernel stack to a private
area of memory associated with the child process. In either case, the kernel stacks
for the parent and child processes are identical. The kernel then creates a dummy
context layer (2) for the child process, containing the saved register context for
context layer (1). It sets the program counter and other registers in the saved
register cintcxt so that it can “restore” the child context, even though it had never
executed before, and so that the child process can recognize itself as the child when
it runs. For instance, if the kernel code tests the value of register 0 to decide if the
process is the parent or the child, it writes the appropriate value in the child saved
register context in layer 1. The mechanism is similar to that discussed for a
context switch in the previous chapter.

When the child context is ready, the parent completes its part of fork by
changing the child state to “ready to run (in memory)” and by returning the child
process ID to the user. The kernel later schedules the child process for execution
via the normal scheduling algorithm, and the child process “completes™ its part of
the fork. The context of the child process was set up by the parent process; to the
kernel, the child process appears to have awakened after awaiting a resource. The
child process executes part of the code for the fork system call, according to the
program c‘)untcr that the kernel restored from the saved register context in context
layer 2, and returns a 0 from the system call.

Figure 7.3 gives a logical view of the parent and child processes and their
relationship to other kernel data structures immediately after completion of the
fork system call. To summarize, both processes share files that the parent had
open at the time of the fork, and the file table reference count for those files is one
greater than it had been. Similarly, the child process has the same current
directory and changed root (if applicable) as the parent, and the inode reference
count of those directories.is one greater than it had been. The processes have
identical copies of the text, data, and (user) stack regions; the region type and the
system implementation determine whether the processes can share a physical copy
of the text region. '

Consider the program in Figure 7.4, an example of sharing file access across a
fork system call. A yser should invoke the program with two parameters, the name
of an existing file and the name of a new file to be created. The process opens the

196 PROCESS CONTROL

Parent Process

U Area
Per Process N File
Parent \ Region Table Open Files Y. Table
Data) Current Directory[*.].. :
Changed Root PR

Kernel Stack

Inode
- Table

U Area

n..

2

3
7

Per Process Open Files ¢

"{.{egion Table

Current Directory}-*|

Child
Data

Changed Root

Kernel Stack

Child Process

Figure 7.3. Fork Creating a New Process Context

existing file, creats the new file, and — assuming it encounters no errors — forks
and creates a child process. Internally, the kernel makes a copy of the parent
context for the child process, and the parent process executes in one address space
and the child process executes in 4nother. Each process can access private copies of
the global variables fdrd, fdwr, and ¢ and private copies of the stack variables argc
and argv, but neither process can access the variables of the other process.
However, the kernel copied the u area of the original process to the child process
during the fork, and the child thus inherits access to the parent files (that is, the
iiles the parent originally opened and creared) using the same file descriptors.

1.7 PROCESS CREATION 197

#include <fentl.h>
int fdrd, fdwt;
char c;

main(argc, argv)
int argc;
char *argv(];

if (argc = 3)
exit(1);

if ((fdrd = open(argvl1], O RDONLY)) == —1)
exit(1);

if ((fdwt = creat(argv{2], 0666)) == —1)
exit(1);

forkQ;

/* both procs execute same code */
rdwrt();

exit(0);

1
)

rdwrt()

{
for (;;)
{

if (read(fdrd, &c, 1) = 1)
return;

write(fdwt, &c, 1);

Figure 7.4. Program where Parent and Child Share File Access

The parent and child processes call the function rdwrt, independently, of course,
and execute a loop, reading one byte from the source file and writing it to the
target file. The function rdwrt returns when the read system call encounters the
end of file. The kernel had incremented the file table counts of the source and
target files, and the file descriptors in both processes refer to the same file table
entries. That is, the file descriptors fdrd for both processes refer to the file table
entry for the source file, and the file descriptors fdwt for both processes refer to the
file table entry for the target file. Therefore, the two processes never read or write
the same file offset values, because the kernel increments them after each read and
write call. Although the processes appear to copy the source file twice as fast
because they share the work load, the contents of the target file depend on the
order that the kernel scheduled the processes. If it schedules the processes such

198 PROCESS CONTROL

that they alternate execution of their system calls, or even if they alternate the
execution of pairs of read-write system calls, the contents of the target file would
be identical to the contents of the source file. But consider the following scenario
where the processes are about to read the two character sequence *“‘ab” in the
source file. Suppose the parent process reads the character 'a’, and the kernel does
a context switch to execute the child process before the parent does the write. If
the child process reads the character 'b’ and writes it to the target file before the
parent is rescheduled, the target file will not contain the string “ab” in the proper
place, but “ba”. The kernel does not guarantee the relative rates of process
execution.

Now consider the program in Figure 7.5, which inherits file descriptors 0 and 1
(standard input and standard output) from its parent. The execution of each pipe
system call allocates two more file descriptors in the arrays to_par and to_chil,
respectively. The process forks and makes a copy of its context: each process can
access its own data, as in the previous example. The parent process closes its
standard output file (file descriptor 1), and dups the write descriptor returned for
the pipe to_chil. Because the first free slot in the parent file descriptor table is the
slot just cleared by the close, the kernel copies the pipe write descriptor to slot 1 in
the file descriptor table, and the standard output file descriptor becomes the pipe
write descriptor for to _chil. The parent process does a similar operation to make
its standard input descriptor the pipe read descriptor for ro_par. Similarly, the
child process closes its standard input file (descriptor 0) and dups the pipe read
descriptor for to_chil. Since the first free slot in the file descriptor table is the
previous standard input slot, the child standard input becomes the pipe read
descriptor for to chil. The child does a similar set of operations to make its
standard output the pipe write descriptor for to par. Both processes close the file
descriptors returnied from pipe— good programming practice, as will be explained.
As a result, when the parent writes its standard output, it is writing the pipe
to_chil and sending data to the child process, which reads the pipe on its standard
input. When the child writes its standard output, it is writing the pipe to_par and
sending data to the parent process, which reads the pipe on its standard input. The
processes thus exchange messages over the two pipes.

The results of this example are invariant, regardless of the order that the
processes execute their respecti\lc system calls. That is, it makes no difference
whether the parent returns from the fork call before the child or afterwards.
Similarly, it makes no difference in what relative order the processes execute the
system calls until they enter their loops: The kernel structures are identical. If the
child process executes its read system call before the parent does its write, the child
process will sleep until the parent writes the pipe and awakens it. If the parent
process writes the pipe before the child reads the pipe, the parent will not complete
its read of standard input until the child reads its standard input and writes its
standard output. From then on, the order of execution is fixed: Each process
completes a read and write, system call and cannot complete its next read system
call until the other process completes a read and write system call. The parent

1.7

PROCESS CREATION

#tinclude <string.h>
char stringl] = “hello world”;
main()

{

int count, i;

int to_par(2], to_chil[2}]; /* for pipes to parent, child */
char bufl256];

pipe(to_par);

pipe(to_chil);

if (fork() == 0)

{

)

/* child process executes here */

close(0); /* close old standard input */
dup(to_chill0]); /* dup pipe read to standard input */
close(1); /* close old standard output */

dup(to_par[1]); /* dup pipe write to standard out */
close(to_par{1]); /* close unnecessary pipe descriptors */
close(to_chil(0));

close(to_par[0]);

close(to_chill1]);

for (;;)

{

if ((count = read (0, buf, sizeof(buf))) == 0)
exit();
write(1, buf, count);

}

/* parent process executes here */

close(1); /* rearrange standard in, out */
dup(to_chill1D;

close(0);

dup(to_par{0OD);

close(to_chill1]);

close(to_par{0]);

close(to_chill0]);

close(to_par[1]);

for G=0; i<15 i++)

{

write(l, string, strlen(string));
read (0, buf, sizeof (buf));

Figure 7.5. Use of Pipe, Dup, and Fork

199

200 PROCESS CONTROL

exits after 15 iterations through the loop; the child then reads ‘“‘end-of-file” becausé
the pipe has no writer processes and exizs. If the child were to write the pipe after
the parent had exired, it would receive a signal for writing a pipe with no reader
processes.

We mentioned above that it is good programming practice to close superfluous
file descriptors. This is true for three reasons. First, it conserves file descriptors in
view of the system-imposed limit. Second, if a child process execs, the file
descriptors remain assigned in the new context, as will be seen. Closing extraneous
files before an exec allows programs to execute in a clean, surprise-free
environment, with only standard input, standard output, and standard error file
descriptors open. Finally, a read of a pipe returns end-of-file only if no processes
have the pipe open for writing. If a reader process keeps the pipe write descriptor
open, it will never know when the writer processes close their end of the pipe. The
example above would not work properly unless the child closes its write pipe
descriptors before entering its loop.

7.2 SIGNALS

Sigrals inform processes of the occurrence of asynchronous events. Processes may
send each other signals with the kill system call, or the kernel may send signals
internally. There are 19 signals in the System V (Release 2) UNIX system that
can be classified as follows (see the description of the signal system call in [SVID
85D):

e Signals having to do with the termination of a process, sent when a process
exits or when a process invokes the signal system call with the death of child
parameter;

e Signals having to do with process induced exceptions such as when a process
accesses an address outside its virtual address space, when it attempts to write
memory that is read-only (such as program text), or when it executes a
privileged instruction or for various hardware errors;

e Signals having to do with the unrecoverable conditions during a system call,
such as running out of system resources during exec after the original address
space has been released (see Section 7.5)

e Signals caused by an unexpected error condition during a system call, such as
making a nonexistent system call (the process passed a system call number that
does not correspond to a legal system call), writing a pipe that has no reader
processes, or using an illegal “reference” value for the Iseek system call. It
would be more consistent to return an error on such system calls instead of
generating a signal, but the use of signals to abort misbehaving processes is
more pragmatic;!

